
Large Scale SSH

Netconf 2020

Michael W Lucas

https://www.mwl.io

Twitter - @mwlauthor

Mastodon - @mwlucas@bsd.network

About Me

• Author

• Unix since 198(mumble), network admin since 1995

• Founding member of semibug.org

• Blatant BSD bigot

• Notorious BSD demagogue

• BSD Geezer

• Long-time BSD advocate

• Author of many books, including SSH Mastery, SNMP Mastery

• As Michael Warren Lucas, writes novels like git commit murder

/ / / / / / / /

Prerequisites

• You use and configure OpenSSH

• You use key-based authentication

• scp(1) and sftp(1) don’t scare you

• Automation is cool

• Mostly talking OpenSSH, some PuTTY

One Problem, Two Faces

• Keys

• Distributing User Keys

• Validating Host Keys

User Keys

• Distributing authorized_keys to individual hosts

• Querying the network for authorized_keys entries

Distributing User Keys

• Copy $HOME/.ssh/authorized_keys

• Problem: you can’t trust users

• Deliberate mucking

• Intruders

Automated Solution

• Users don’t get to update their own authorized keys, submit to
automation system

• In sshd_config, do

AuthorizedKeysFile /etc/ssh/keys/%u

• Keys go in /etc/ssh/keys/mwl, /etc/ssh/keys/bagel, etc

Querying the Network for Keys

• Do you have LDAP?

• Load the proper schema into your LDAP directory

• Configure sshd_config

AuthorizedKeysCommand /usr/scripts/getAuthorizedKeys.pl

AuthorizedKeysCommandUser keymaster

• The script you need varies with LDAP implementation

Simple Network Script

#!/usr/bin/perl

die unless $ARGV[0];

open (LDAP, "/usr/bin/ldapsearch -L -xZb\"dc=michaelwlucas,dc=com\" \

'(&(objectClass=posixAccount)(uid=$ARGV[0]))' sshPublicKey |") \

|| die "ldapsearch failed $!\n";

while (<LDAP>) {

next if /^#|^version|^dn\:|^\s*$/;

s/\n//;

s/\://g;

s/sshPublicKey/\n/;

s/^ //;

print;

}

print "\n";

No LDAP? No Problem!

• LDAP is the most common network-available database

• Your network is special

• AuthorizedKeysCommand is a script

• Do you have SQL? Any kind of directory?

Host Keys

• How many of you know you should meticulously verify a server’s
SSH host key before logging in?

• How many of you actually verify a server’s SSH host key?

• SSH host key verification is like flossing.

• Solution: don’t have a human do it

• Distribute known_hosts

• Look up known_hosts

Creating known_hosts

• Before exposing to the Internet, get a known good host key with ssh-
keyscan(1)

$ ssh-keyscan www > www.known_hosts

• I keep these per-hostname files

• Can simplify known_hosts by reducing supported algorithms in
sshd_config

HostKeyAlgorithms ssh-ed25519, ssh-rsa

• Concatenate into known_hosts

Revoking known_hosts

• If a key is compromised, don’t give users the chance to manually
accept it. Revoke it & redistribute.

@revoked www2 ecdsa-sha2-nistp256 AAAAE2VjZHNhLXNoYTIt…

Distributing known_hosts

• Leave $HOME/.ssh/known_hosts alone

• Place in /etc/ssh/ssh_known_hosts

• User’s known_hosts can contain obsolete keys, move it away upon
first deployment

• Once you have automation: /etc/ssh/ssh_config contains global SSH
settings

Distributing PuTTY host key cache

• PuTTY stores host keys in registry

• The kh2reg.py script in PuTTY source code converts known_hosts to
PuTTY registry keys

$ hk2reg.py pristine-known_hosts > putty.reg

• Have AD install this at user logon

Host Keys in DNS

• SSHFP (SSH Fingerprint) records

• Requires DNSSEC

$ mail~; ssh-keygen -r mail

mail IN SSHFP 1 1 f0a2cc23ed07b4bf1201eaae4aba712bae739945

mail IN SSHFP 1 2 4e7eb91fedc66b0ca59c8e74244826302a4e0ee4568d4c6a0149543244c3339b

mail IN SSHFP 2 1 68a0e9db5e3ee92db1e2d8399b05a3e7ab244a1a

mail IN SSHFP 2 2 7d04969d6e75f95a84f5cb3430e49172ebfddc03e987bb4f176f34b6e8753b94

…

• Key files from a different host? Use –f flag

SSH Certificate Authorities

• Totally different from X.509 (TLS) certificate authorities

• A CA is a method of delegating trust. Requires two features:

• Encryption

• Signing

• An SSH key can provide both of these

• SSH CA: an SSH key you choose to use as a CA

• Much like a self-signed TLS certificate

• Don’t need external trust

• 100% requires automation: copy files & restart sshd

Certificate Expiration

• Certificates Expire

• 25-year certs will be cryptographically insecure long before they
expire

• Expire every year or so

• Add bonus time for appendicitis

• Or, auto-renew in half the expiration time

Organizing your CA

• One CA for users, one for hosts

• Don’t use /etc/ssh

• /usr/local/sshca/users

• /usr/local/sshca/hosts

• Give each host or user their own subdirectory, like /usr/local/sshca/users/mwl
or /usr/local/sshca/hosts/www

• Every host has host key files, keep them separate from other hosts

Generating Host & User CA keys

• Our old friend ssh-keygen(1)

$ ssh-keygen –t rsa –f host-myca-key –c 'host CA key 2018-06-09'

$ ssh-keygen –t rsa –f user-myca-key –c ‘user CA key 2018-06-09’

• Secure the keys to the kingdom!

• Now teach sshd(8) and ssh(1) to trust these CAs

CA and sshd(8)

• Sshd authenticates users, it must trust the user CA key

• Create a file containing all trusted user CA public keys, one key per
line

• In sshd_config, use

TrustedUserCAKeys /etc/ssh/user-ca-keys.pub

CA and ssh(1)

• ssh(1) authenticates hosts, it needs to trust host CA

• ssh_known_hosts is for exactly this

• Mark the key with @cert-authority and domains it’s valid for

@cert-authority *.mwl.io,michaelwlucas.com ssh-rsa AAAA…

Certificate Identity

• Says what the cert is for

• Set at cert creation

• Logged when key is used

• I use host_ for host certs and user_ for user certs

Certificate Archives

• Easier to revoke a key when you have the key

• Users can’t be trusted

• Keep a copy of cert and public key in CA archive

Creating Host Certificates

• Use ssh-keygen(8) - not ssh-keysign(8)!

ssh-keygen -s host-mwlca-key -I host_sloth -h \

-n sloth.mwl.io -V +56w5d ssh_host_*pub

• -s = host CA key

• -I = identity

• -h = host cert

• -n = host or hosts this cert is good for

• -V = expiration date

• Last, key file

Host Certificate Files

• You get a -cert file for each public key file
• ssh_host_rsa_key.pub, ssh_host_rsa_key-cert.pub
• ssh_host_dsa_key.pub, ssh_host_dsa_key-cert.pub
• ssh_host_ecdsa_key.pub, ssh_host_ecdsa_key-cert.pub
• ssh_host_ed25519_key.pub, ssh_host_ed25519_key-cert.pub

• Copy the certs to server’s /etc/ssh

HostKey /etc/ssh/ssh_host_rsa_key

HostCertificate /etc/ssh/ssh_host_rsa_key-cert.pub

…

HostKey /etc/ssh/ssh_host_ed25519_key

HostCertificate /etc/ssh/ssh_host_ed25519_key-cert.pub

Viewing Certificates

ssh-keygen -Lf ssh_host_ed25519_key-cert.pub

ssh_host_ed25519_key-cert.pub:

Type: ssh-ed25519-cert-v01@openssh.com host certificate

Public key: ED25519-CERT SHA256:nNtyIQidY3MXAEfpWZ0wzkXK...

Signing CA: RSA SHA256:ZQHNMc2TmWlnygGy9+UoOYFK92RdbguzN...

Key ID: “sloth”

Serial: 0

Valid: from 2017-12-04T11:52:00 to 2017-12-25T11:53:17

Principals:

sloth.mwl.io

Critical Options: (none)

Extensions: (none)

Testing Host Certificates

• Move known_hosts out of the way

• Should connect without being prompted for key verification

• Doesn’t work? Add 1-3 –v to get debugging output

• Don’t have CA installed on client?

Creating User Certificates

• Use ssh-keygen(8) - not ssh-keysign(8)!

ssh-keygen -s user-mwlca-key -I user_mwl \

-n mwl -V +56w5d id_rsa.pub

• -s = host CA key

• -I = identity

• -n = user this cert is good for

• -V = expiration date

• Last, user’s public key file

Using User Certificates

• Copy certificate file into $HOME/.ssh/

• Corresponding key file should be there, i.e.:

• id_rsa.pub, id_rsa-cert.pub

Disabling authorized_keys

• Users cannot be trusted

• Someone will upload an authorized_keys just for convenience

• In sshd_config

• AuthorizedKeysFile none

Massive Scale SSH

• Millions of servers?

• Tens of thousands of sysadmins?

• UID range of 1-65535 too small?

• LDAP servers releasing smoke from too much load?

Principals

• A named entity, not tied to a hostname or UID

• Can be structured any way you want

• Principals can be authorized to log in via sshd

AuthorizedPrincipalsFile

• Contains a list of principals allowed to use the service

• AuthorizedPrincipalsFile /etc/ssh/principals

• Might contain:

everywhere-root

europe-root

europe-database

• Can also do AuthorizedPrincipalsFile /etc/ssh/principals/%u

Create Certs with Principals

• Use ssh-keygen

ssh-keygen -s user-mwlca-key \

-I user_87181_Michael_Lucas -n peasants,vermin \

-V +52w id_rsa.pub

• Identity contains employee ID number and real name

• -n gives assigned principals, peasants and vermin

• Must re-issue cert to assign new principals

Look Up Principals

• Text files across millions of servers? No no no

AuthorizedPrincipalsCommand /usr/scripts/principals.pl

AuthorizedPrincipalsCommandUser apc

Questions and Answers?

